Sneaky shape-shifting molecule mimics DNA to trick viruses (Day 333)

Very few discoveries truly revolutionise the way we look at the world.

However, the discovery of the structure of DNA is one of them. And it was on this day in 1953, that the structure of DNA was published in the journal Nature.

dnaThis discovery is often seen as controversial, not due to its scientific content, but the fact that the work was largely attributed to one team; Watson and Crick.

This work was published at the same time in a number of papers in Nature by three teams: Watson and Crick; Wilkins, Stokes, and Wilson; and Franklin and Gosling.

The key break through for Watson and Crick’s work came from Rosalind Franklin who studied DNA using X-ray crystallography, but this was largely unacknowledged at the time. In 1962 Crick and Watson, along with Wilkins, received a Nobel Prize for their discovery. Rosalind had died four years earlier so was not eligible for a Nobel Prize.

So to ensure that we celebrate all their work today, I thought I would bring to your attention a recent innovation, which would not have been possible without this major discovery.

A team of scientists and engineers from the University of Chicago (UChicago) and the Massachusetts Institute of Technology (MIT), US, have developed a new spectroscopy method that could prove useful in developing the next generation of anti-viral treatments.

The team used synthetically designed shape-shifting molecules which are able to resemble natural DNA bases, but can convert into a different molecular structure by repositioning their hydrogen atoms on nitrogen and oxygen atoms.

Continue reading Sneaky shape-shifting molecule mimics DNA to trick viruses (Day 333)

Healthcare goes 3D (Day 207)

Mesoporous silica rods
Mesoporous silica rods spontaneously assemble to form a porous 3D scaffold, as seen in this SEM image. The 3D scaffold has many nooks and crannies and is large enough to house tens of millions of recruited immune cells. Image: Harvard

Some diseases like cancer carry more than one jeopardy.

Untreated it causes harm and threatens life. Treatment too carries its own risks.

And if you’re unlucky enough to contract cancers such as lymphomas and leukaemias, even the body’s own natural defences become less effective.

Ways to stimulate the body’s immune system has been the focus of researchers at Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University.

And they’ve had success with a non-surgical injection of programmable biomaterial that spontaneously assembles in vivo to activate a host’s immune cells into a 3D structure which can help fight and even contribute to the prevention of cancer and infectious diseases such as HIV.

Continue reading Healthcare goes 3D (Day 207)