Our energy system is ever-evolving. Over the past 200 years, we’ve seen a huge shift in our energy consumption and production. From the start of the industrial revolution, where coal was the central cog keeping the world ticking, to now where renewable and alternative energy is taking the world by storm.
Matthias Schnellmann chairs a group of other early-career professionals from across the energy sector, known as IChemE’s Future Energy Leaders. Together, they help to support the IChemE Energy Centre, engaging with policy debates, responding to consultations and producing original research and position papers. The group also lead on public engagement activities that support the centre’s priorities.
In October, Matthias and his colleagues represented the IChemE Energy Centre at New Scientist Live – one of the UK’s largest scientific festivals. With interactive presentations and posters, they gave other engineers, scientists and students visiting the four-day event at ExCeL London just a glimpse into the complexity of our energy systems.
COP22, or the 22nd Conferences of Parties to the UN Framework Convention on Climate Change (UNFCCC), has come to an end. Billed as the ‘COP of action’ by UNFCCC Executive Secretary Patricia Espinosa, an estimated 25,000 people descended on Marrakech, Morocco to start the process of implementing the Paris Agreement.
However, COP22 had a lot to live up to, following the historic result of the Paris Agreement at the conclusion of COP21. All the countries of the world were invited to attend COP22, but only the countries who had ratified the Paris Agreement had decision- making authority.
The Marrakech 22nd Conference of Parties ran from 7-18 November 2016. It was also the 12th Conference of the Parties serving as the Meeting of the Parties to the Kyoto Protocol (CMP 12), and the 1st Conference of the Parties serving as the Meeting of the Parties to the Paris Agreement (CMA 1).
The event looked at practical solutions to implementing the Paris Agreement, with the help of chemical engineers and financial institutions. Dr Rachael Hall, from the Energy Centre Board, gave the first presentation, an overview of deployment technologies available to mitigate climate change. Rachael outlined pathways to a zero-carbon economy, as demonstrated in IChemE’s technical policy document Chemical Engineering Matters.
Mark Apsey, also a Board member of the Energy Centre, gave his presentation on the pathways for organisations to deliver energy efficiency projects. Outlining various ‘road blocks’ to implementing greener energy solutions, Mark made it clear that he felt that more needed to be done to incentivise delivery.
COP22’s interesting side-event programme was jam-packed, and this year saw an increased focus on technology solutions for and the investment required to mitigate climate change.
Mark said: “From IChemE’s perspective Chemical Engineering Matters has been created to not just cover energy, but water, food, and wellbeing – which are really trying to look at the whole system, as well as specific solutions to energy problems”.
The UNFCCC needs more chemical engineers at the table proposing feasible solutions for mitigating climate change and applying a systems thinking approach to the implementation of the Paris Agreement.
Ban Ki-moon addresses COP22
COP22 was also Ban Ki-moon’s last COP conference. The Secretary-General of the United Nations until the end of the year, he spoke about the success in ratifying the Paris Agreement, which was announced just last month: “Countries have strongly supported the Agreement because they realize their own national interest is best secured by pursuing the common good. Now we have to translate words into effective policies and actions. This is critical to protect our planet, safeguard the most vulnerable and drive shared prosperity. Low-emission development and climate resilience will advance all the Sustainable Development Goals”.
An inspirational figure in the fight against climate change, Ban Ki-moon’s presence will be missed.
The aim of COP22 was to spend the conference working out a clear work plan for achieving the targets set in the Paris Agreement, however the UN has set a target of 2018 to have these plans finalised. This meant that a large proportion of COP22 was spent ‘fleshing out’ the Agreement’s fine print. This included financial support, which will have a massive impact on developing nations. Much of this year’s discussions surrounded the funding gap to research, and scale-up and implementation of the technology solutions to reduce carbon emissions.
During the CMA plenary, parties adopted the agenda and the organisation of work. UNFCCC Executive Secretary Patricia Espinosa reported that, as of 16 November 2016, 110 parties to the Convention had deposited their instruments of ratification, acceptance, approval or accession to the Paris Agreement, representing more than half of Convention parties (at time of writing this figure is now at 111).
Ibrahim Thiaw, Deputy Executive Director, UN Environment, said that the current pledges are insufficient to reach the Paris Agreement’s goals, but cited opportunities to “bend the emissions curve.” This means that we have to act now to ensure we implement climate mitigation strategies. Chemical engineers have a key role to play in solution implementation and applying systems-thinking.
During the conclusion of COP22 there was some exciting news, 47 countries from the Climate Vulnerable Forum committed to going 100% renewable as they adopted the ‘Marrakech Vision’.
Almost 200 countries gathered in Marrakech to work out the details of implementing the Paris Agreement. This deal established the overarching global goals for tackling climate change, but didn’t include the detail of how we get there. This left COP22 with a lot of complicated work to do.
Despite being billed as the COP of action, COP22 was instead the COP of discussing the next steps required to implement the Paris Agreement. However, this was a very necessary step if we are to successfully halt catastrophic climate change.
You can read the latest version of the COP22 proceedings by following this link.
If you were at COP22 please get in touch and tell us how your work is saving the planet.
IChemE member and Energy Centre Future Energy Leaders Vice-Chair Matthias Schnellmann was there to participate in the discussions. Here are his thoughts:
Name: Matthias Schnellmann Education: Chemical Engineering (MEng), University of Cambridge Job Title: PhD Student, University of Cambridge Special Interest Group:Clean Energy Research interests: Low carbon energy
The IChemE Energy Centre, along with the Knowledge Transfer Network (KTN) organised a Low Carbon Summit at the Department of Business, Energy and Industrial Strategy in London on Friday 9 September 2016. It was an opportunity to consider what the COP21 and 5th Carbon Budget targets mean for the UK and how existing and future low carbon technologies will help us to meet them.
12 December 2015 will go down in history as the day the world agreed to do something about climate change. The impact of countries around the world reaching such an agreement cannot be ignored. However, for us to actually achieve the targets set in Paris we need to act now.
Chemical engineers have been working for some time to find and implement ways to combat climate change.
Here are just ten of the ways that chemical engineers can save the world from the impact of climate change:
1. Systems-thinking
Chemical engineering makes its professional contribution by understanding how whole systems work, and generating engineered system solutions to meet desired targets. The ideology and discussion behind climate change solutions is in place, but it needs a chemical engineering, systems thinking approach to apply the technical solutions.
2. Energy efficiency
Becoming more energy efficient is the obvious easy win (at least for chemical engineers). The 2012 Global Energy Assessment stated that 66 per cent of the energy produced today is wasted. The chemicals sector is the most energy intensive industry, but current internal rates of return stand at just 12-19 per cent. Chemical engineers can change this and make energy efficiency the number one priority
As an agreement looks set to be on the horizon (fingers crossed!) the Energy Centre was involved in two events.
Both events asked the same question – Do you believe that the technical solutions to reducing greenhouse gas emissions already exist?
Find out what happened below.
Paris
Our official COP21 side event in Paris saw several leading thinkers – including our own Chair of the Energy Centre Stefaan Simons – deliver their thoughts on ‘Technology solutions for a two degree world’.
In order to deliver a low carbon economy, we must move away from our current low efficiency, high carbon energy system. Our new energy system must be much more efficient, and low carbon.
This will mean abandoning the linear system of large scale, centralised energy production from fossil fuels.
The replacement should be a non-linear system where electricity is produced at widely distributed sites, at various scales, using renewable sources of energy.
To meet base load power demand, this system will need to combine fossil fuels with carbon capture and storage (CCS), and other sources of energy – such as nuclear.
This future low carbon energy system can only work if the way we generate and consume energy becomes much more flexible, and is able to respond rapidly to external weather and price fluctuations.
Matching supply with demand, particularly when a significant proportion of electricity is being generated by intermittent renewable sources, such as wind and solar, will require energy storage.
Nuclear power is already playing a vital role in decarbonising the global energy economy. Its capacity to provide base load power makes it a stable and low-carbon energy supply.
Nuclear power provides approximately 11 per cent of the world’s energy. In the UK, nuclear power generation makes up 19 per cent of the energy landscape. The proportion is much higher in France, at 75 per cent.
Thorp reprocessing plant – Sellafield Ltd
However, there are still significant public concerns over the safety and environmental impacts of nuclear power, and the legacy issues of waste. These concerns mean there is often very little support for new nuclear power plants.
As we move to a low carbon future nuclear, new build will have to play an even bigger part in the energy strategies of many governments, because nuclear doesn’t emit carbon dioxide during power generation.
The COP21 talks in Paris came to a turning-point on Saturday, as an update to the draft agreement was released. Finance appears to be the over-riding issue as we settle in to the second week of the conference – but what about the solutions?
Did you know that more than half of the world’s annual carbon emissions could be prevented over the next 50 years by using sustainable bioenergy?
According to research by Pacala and Socolow, outlined by the IChemE Energy Centre, 25 billion tonnes of carbon emissions can be prevented from entering the atmosphere – simply by switching from fossil-based petroleum to bioethanol as our primary transportation fuel.
So why aren’t we using it already?
The raw materials used in bioenergy production – food crops like maize and sugarcane – come with a lot of associated challenges. Food crops are by no means guaranteed; a bad season could have a detrimental effect, particularly in developing countries who rely on their crops as a means of livelihood. Concerns about the economical implications for developing countries have already been raised in Paris – and could be a deal-breaker for alternative fuels like bioenergy.
The world’s population is expected to exceed nine billion by 2050. With this growth there will be an increasing demand for energy.
As it stands, fossil fuels provide more than 85 per cent of the world’s energy. And despite significant global efforts to shift to renewable energy generation, renewable sources only accounted for 2 per cent of the global energy supply in 2014.
It is therefore logical and reasonable to believe that fossil fuels will remain an indispensable part of the world’s energy landscape until at least the end of this century.
At COP21, representatives from over 190 countries will try to reach an agreement to limit global warming to the two degrees target, and this will involve stabilising atmospheric CO2 concentrations at a level of 450 parts per million (ppm).
So what does this mean? For fossil fuels, it means we need to decarbonise electricity production; and carbon capture and storage (CCS) is a readily deployable technology solution to do this.
The first is energy efficiency, a central part of ensuring we maximise the energy we produce to reduce both waste and harmful emissions.
The need to improve energy efficiency is perhaps one of the easiest topics to get a consensus on, and it will form an imperative part of an effective agreement at the Paris climate talks over the next week.
The numbers speak for themselves. The 2012 Global Energy Assessment revealed that 66 per cent of the energy produced today is wasted. For the chemical process industries and the chemical engineering sector, the implications of this statistic are huge.
This week saw the start of the 21st Conference of Parties, COP21. More than 190 countries and 150 global leaders have gathered in Paris, France, to discuss a new global agreement on climate change.
The United Nations (UN) event will host around 40,000 people and runs right through until the end of next week (11 December).
The future of the natural world, and the animals and plant life that call it home, depends on the outcome of this conference. If we don’t limit global warming to 2 degrees, the consequences will be catastrophic.
Whilst we cannot accurately predict the scale of any potential impacts now, what we do know for certain is that climate change is happening, and we have a responsibility to reduce any further damage.
Chemical engineers are part of the solution, and the IChemE Energy Centre has identified five priority areas where technology can be deployed now to help mitigate climate change.
You must be logged in to post a comment.