COP22: What next? – Q&A from the IChemE Energy Centre’s latest discussion on climate change

Last week (Thursday 12 January), the IChemE Energy Centre welcomed participants both online and in person to discuss the outcomes of ‘COP22 – what next?’.

COP22

Hosted by Chair of the IChemE Energy Centre, Professor Stefaan Simons, at the Institution of Engineering and Technology (IET), UK, participants first heard from Board members Dr Rachael Hall, Model Site Lead – Severn Trent Innovation Team, and Mark Apsey, Technical Services Director – Ameresco Limited, about their experience at COP22 in Marrakech.

This was followed by Dr Alison Cooke, Founder and Consultant – Cooke Associates, who gave a brief overview of what it’s like to work with the United Nations Framework Convention on Climate Change (UNFCC) as a mechanical engineer.

The audience was then invited for a discussion on on the outcomes of COP22 and the next steps we must take to implement the Paris Agreement.

Continue reading

Putting the Paris Agreement into action at #COP22 #InvestPlanet

Yesterday the UN’s 22nd session of the Conference of Parties (COP22) commenced in Marrakesh, Morocco. 20,000 delegates from 196 countries are expected to attend and discuss how to turn the COP21 Paris Agreement into action.

What happened at COP21?

Stef Simons, Energy Centre Chair, speaking at COP21 earlier today

Professor Stefaan Simons, Energy Centre Chair, speaking at COP21 in 2015

COP21 was arguably one of the most historic meetings in terms of mitigating climate change. On 12 December 2015 the world united in an agreement to take action, and 197 countries signed the Paris Agreement which made each country take responsibility for recognising and combating climate change.

The central aim was to limit global temperature rise this century to well below 2°C over pre-industrial levels, and to pursue efforts to limit the temperature increase even further to 1.5°C. Additionally, the agreement aims to strengthen the ability of countries to deal with the impacts of climate change.

And we were there too! The IChemE Energy Centre published its Climate Communique and Supporting Statement in October 2015, identfying five priority areas where technology should be deployed to help mitigate climate change:

  • energy efficiency
  • energy storage and grid management
  • carbon capture, storage and utilisation
  • nuclear
  • sustainable bioenergy

Energy Board Centre Chair Professor Stefaan Simons hosted an official side event at COP21: Technology solutions for a 2oC world: Investing in renewables, storage, energy efficiency and CCS. If you missed it you can watch it all on our YouTube channel and read a write-up of the event and our follow-up talks in London.

Ratification

The Paris talks concluded that 197 countries had adopted the Agreement, but the real commitment would be shown through ratification. The Agreement was opened for ratification on 22 April 2016 at the UN Headquarters in New York. Parties representing 55% of the global greenhouse gas emissions needed to be accounted for in order to make the Agreement ‘entered into force’.

The biggest emitters of CO2, including China and USA ratified at the beginning of September, causing a number of other countries to follow.

Last month the threshold was achieved, and on Friday 4 November, it was confirmed that the Paris Agreement had officially been entered into force. This means that it is now down to each country to start planning and implementing actions to reach the agreed targets.

The UK is still yet to ratify, despite the European Union making an official admission on 5 October. Currently 100 out of the 197 parties who adopted the Agreement have ratified.

What is happening at COP22?

COP22

Positioned as the ‘bridge’ between decision and action, COP22 will define the mechanism for the implementation of the Paris Agreement. This covers funding, climate change policy, and technology deployment.

The ratification of the Agreement is incredibly timely, and encourages this Conference to concentrate on the emissions targets and goal of achieving a zero carbon economy by 2050.

The idea is to spend the conference working out a clear work plan for achieving the targets, and the UN has set a target of 2018 to have this finalised. This will involve some ‘fleshing out’ of the Agreement’s fine print, including financial support which will have a massive impact on developing nations.

Join IChemE at the talks

While the conference has already started, our presence at the talks kicks off on Monday 14 November. We will be holding a side event in collaboration with The Grantham Institute at Imperial College London, and the Natural Resources Defense Council (NRDC).

The event – Investing in the planet: Green banks and other financial tools to scale-up mitigation technologies – will focus on the financing and policy mechanisms required for deploying low carbon technologies. The event will make sure to highlight that financing is essential for both mitigation and adaptation, and in the broader context of the sustainable development goals.

Not going to be there in person? The event will be live-streamed on YouTube, so head over at 11:30 – 14:00 (WET) on Monday 14 November.

We’ll also have a stand at the exhibition, to help raise the profile of chemical engineers and advocate their role in mitigating climate change. Working with the IChemE Energy Centre, we will be spreading the word about how chemical engineers will help to deploy the technologies needed to meet the global targets.

Come and visit us at our stand.

You can also follow all the action on Twitter, just search #InvestPlanet.

Ten ways chemical engineers can save the world from climate change #COP21

COP21 logo12 December 2015 will go down in history as the day the world agreed to do something about climate change. The impact of countries around the world reaching such an agreement cannot be ignored. However, for us to actually achieve the targets set in Paris we need to act now.

Chemical engineers have been working for some time to find and implement ways to combat climate change.

Here are just ten of the ways that chemical engineers can save the world from the impact of climate change:

1. Systems-thinking

systems engineeringChemical engineering makes its professional contribution by understanding how whole systems work, and generating engineered system solutions to meet desired targets. The ideology and discussion behind climate change solutions is in place, but it needs a chemical engineering, systems thinking approach to apply the technical solutions.

2. Energy efficiency

shutterstock_274012796Becoming more energy efficient is the obvious easy win (at least for chemical engineers). The 2012 Global Energy Assessment stated that 66 per cent of the energy produced today is wasted. The chemicals sector is the most energy intensive industry, but current internal rates of return stand at just 12-19 per cent. Chemical engineers can change this and make energy efficiency the number one priority

Continue reading

From Paris to London – IChemE Energy Centre speaks out at #COP21

COP21 logoWe hope you have been following our series of #COP21 blog posts, focusing on the IChemE Energy Centre’s five priority topics for the COP21 climate talks.

As an agreement looks set to be on the horizon (fingers crossed!) the Energy Centre was involved in two events.

Both events asked the same question – Do you believe that the technical solutions to reducing greenhouse gas emissions already exist?

Find out what happened below.


Paris

Our official COP21 side event in Paris saw several leading thinkers – including our own Chair of the Energy Centre Stefaan Simons – deliver their thoughts on ‘Technology solutions for a two degree world’.

Continue reading

Making renewables work through energy storage and grid management #COP21

solar power plantIn order to deliver a low carbon economy, we must move away from our current low efficiency, high carbon energy system. Our new energy system must be much more efficient, and low carbon.

This will mean abandoning the linear system of large scale, centralised energy production from fossil fuels.

The replacement should be a non-linear system where electricity is produced at widely distributed sites, at various scales, using renewable sources of energy.

To meet base load power demand, this system will need to combine fossil fuels with carbon capture and storage (CCS), and other sources of energy – such as nuclear.

This future low carbon energy system can only work if the way we generate and consume energy becomes much more flexible, and is able to respond rapidly to external weather and price fluctuations.

Matching supply with demand, particularly when a significant proportion of electricity is being generated by intermittent renewable sources, such as wind and solar, will require energy storage.

Continue reading

The future of nuclear power generation #COP21

Nuclear power is already playing a vital role in decarbonising the global energy economy. Its capacity to provide base load power makes it a stable and low-carbon energy supply.

Nuclear power provides approximately 11 per cent of the world’s energy. In the UK, nuclear power generation makes up 19 per cent of the energy landscape. The proportion is much higher in France, at 75 per cent.

Thorp reprocessing plant - Sellafield Ltd

Thorp reprocessing plant – Sellafield Ltd

However, there are still significant public concerns over the safety and environmental impacts of nuclear power, and the legacy issues of waste. These concerns mean there is often very little support for new nuclear power plants.

As we move to a low carbon future nuclear, new build will have to play an even bigger part in the energy strategies of many governments, because nuclear doesn’t emit carbon dioxide during power generation.

Continue reading

Sustainable bioenergy can dramatically reduce global carbon emissions #COP21

The COP21 talks in Paris came to a turning-point on Saturday, as an update to the draft agreement was released. Finance appears to be the over-riding issue as we settle in to the second week of the conference – but what about the solutions?

Did you know that more than half of the world’s annual carbon emissions could be prevented over the next 50 years by using sustainable bioenergy?

shutterstock_112362932

According to research by Pacala and Socolow, outlined by the IChemE Energy Centre, 25 billion tonnes of carbon emissions can be prevented from entering the atmosphere – simply by switching from fossil-based petroleum to bioethanol as our primary transportation fuel.

So why aren’t we using it already?

The raw materials used in bioenergy production – food crops like maize and sugarcane – come with a lot of associated challenges. Food crops are by no means guaranteed; a bad season could have a detrimental effect, particularly in developing countries who rely on their crops as a means of livelihood. Concerns about the economical implications for developing countries have already been raised in Paris – and could be a deal-breaker for alternative fuels like bioenergy.

Continue reading

Carbon capture and storage is part of the climate solution #COP21

Bulbs and energyThe world’s population is expected to exceed nine billion by 2050. With this growth there will be an increasing demand for energy.

As it stands, fossil fuels provide more than 85 per cent of the world’s energy. And despite significant global efforts to shift to renewable energy generation, renewable sources only accounted for 2 per cent of the global energy supply in 2014.

It is therefore logical and reasonable to believe that fossil fuels will remain an indispensable part of the world’s energy landscape until at least the end of this century.

Climate Change - sliderAt COP21, representatives from over 190 countries will try to reach an agreement to limit global warming to the two degrees target, and this will involve stabilising atmospheric COconcentrations at a level of 450 parts per million (ppm).

So what does this mean? For fossil fuels, it means we need to decarbonise electricity production; and carbon capture and storage (CCS) is a readily deployable technology solution to do this.

Continue reading

Why are we wasting so much energy in industry? #COP21

shutterstock_274012796Yesterday we outlined the IChemE Energy Centre’s five priority topics for focus at COP21 to help solve the global climate change challenges we face today.

The first is energy efficiency, a central part of ensuring we maximise the energy we produce to reduce both waste and harmful emissions.

The need to improve energy efficiency is perhaps one of the easiest topics to get a consensus on, and it will form an imperative part of an effective agreement at the Paris climate talks over the next week.

The numbers speak for themselves. The 2012 Global Energy Assessment revealed that 66 per cent of the energy produced today is wasted. For the chemical process industries and the chemical engineering sector, the implications of this statistic are huge.

Continue reading

Chemical engineers can help solve the climate challenge #COP21

COP21 logoThis week saw the start of the 21st Conference of Parties, COP21. More than 190 countries and 150 global leaders have gathered in Paris, France, to discuss a new global agreement on climate change.

The United Nations (UN) event will host around 40,000 people and runs right through until the end of next week (11 December).

The future of the natural world, and the animals and plant life that call it home, depends on the outcome of this conference. If we don’t limit global warming to 2 degrees, the consequences will be catastrophic.

Polar bearWhilst we cannot accurately predict the scale of any potential impacts now, what we do know for certain is that climate change is happening, and we have a responsibility to reduce any further damage.

Chemical engineers are part of the solution, and the IChemE Energy Centre has identified five priority areas where technology can be deployed now to help mitigate climate change.

Continue reading

Four horsemen of the apocalypse – four challenges for chemical engineers (Day 362)

Day 362, four blogs to go. Four more opportunities to highlight chemical engineering in action.

In the Christian tradition, the four horsemen of the apocalypse are the harbingers of the end of the world.

Other faiths offer different views, but for the purposes of this blog post I’m taking a look at four big challenges that present a serious threat to life on earth: water scarcity; increasing energy demand; food security; and climate change. What are chemical  engineers doing to tackle these issues and avert the apocalypse?

perfect stormI have previously observed that we run the risk of sleep-walking towards climate catastrophe. But it’s more complicated than that. The water, energy, food and climate change challenges are interrelated. The former Chief Scientific Adviser to the UK Government, Sir John Beddington, used the term Perfect Storm to describe this phenomenon arguing that climate change will intensify pressure on resources further, adding to the vulnerability of both ecosystems and people.

Chemical engineering can provide shelter from John’s ‘Perfect storm’.  Here are some examples.

Continue reading

Using a calculator to find climate change solutions (Day 301)

Last week I was fortunate to attend a meeting of the IChemE London and South East Member Group to discuss the need  to transform the technologies and fuels we use, and make smarter use of our resources.

city on phoneThe talk was hosted by Dr Tom Counsell from the UK Department for Energy and Climate Change (DECC). Tom gave a highly entertaining introduction to the Global Calculator.

Tom posed a big question: “Can we improve equality of life for 10 billion people and tackle climate change?” A lively debate ensued and I suddenly found myself in a room full of people trying to save the world.

I have always believed that its the job of the chemical engineer to improve quality of life for all and to do it sustainably. However, in recent times I have concluded that we are sleepwalking into a catastrophic climate change future. Serious effort is needed to avert this.

The Global Calculator offers a way to test out our theories and apply solutions to combat climate change.

Continue reading

Spreading the engineering message through immersive theatre (Day 252)

Climate change and water scarcity are issues that we all need to keep talking about. But I recognise that perhaps we need to talk about them in more interesting ways than just lecturing.

You could say that the reality of climate change and water scarcity hasn’t hit home with the general public because the effects aren’t immediate and felt on their doorstep. The data, facts and figures are there but the urgency of action isn’t.

As a chemical engineer, I can talk about the issues, I can lecture, I can discuss at length with my peers and even the media, but it is easy for my voice and others to get drowned out.

New Atlantis theatre production. Image courtesy of LAStheatre

New Atlantis theatre production. Image courtesy of LAStheatre

One interesting way to engage the public about such issues is through immersive theatre.

You might think that engineering and theatre couldn’t be further apart, but a theatre production called New Atlantis by LAStheatre, held in London, UK, has provided an entertaining way to bring key messages and solutions of the future to a willing audience.

Continue reading

Planet Poker (Day 181)

If you had to sit down in front of the three biggest emitters of greenhouse gases in the world – China (29 per cent), USA (15 per cent), and the European Union (10 per cent) – and persuade them to scale back their use of fossil fuels what would you say?

Would you take the emotive approach and appeal to their sense of humanity by highlighting the risks they are storing up for our children and grandchildren in the future?

Or would you lead with the science articulated so determinedly by the Intergovernmental Panel on Climate Change (IPCC) published in its Synthesis Report at the start of this month?

PokerEither way, it does seem that nations – and even within nations – the world’s biggest game of poker is underway.

Our leaders are literally gambling with our planet, and the odds are getting worse if you agree with the IPCC.

This game of cards moved on recently when China and the US unveiled new pledges on greenhouse gas emissions.

US President Barack Obama said the move was “historic”, as he set a new goal of reducing US levels between 26 per cent-28 per cent by 2025, compared with 2005 levels.

China did not set a specific target, but said emissions would peak by 2030.

Continue reading

A floating economy (Day 176)

Two projects have caught my eye recently that may give some hints about where we might build some of our power stations and processing facilities in the future.

Quite rightly, land-based power stations and industrial units are subject to careful scrutiny before planning permission is given. The fact they are so visible and close to communities means the opinions of thousands of people may need to be considered.

Even offshore facilities like fixed wind farms, visible from coastlines, bear the scars of public consultation.

But what if we generated our power or processed raw materials further out into our seas and oceans, beyond the horizon. Would that offer a new solution?

Fukushima Floating Wind Turbine

Floating energy – the Fukushima Floating Wind Turbine Demonstration Project. Image by Fukushima Forward

Continue reading

It’s not just the polar bears at risk (Day 163)

Polar bearA common image of mankind’s influence on our planet is to show its impact on nature and wildlife.

In relation to climate change, the plight of the polar bear is often highlighted. But should that image now include humans?

By the end of the century it may be a reality – certainly the Intergovernmental Panel on Climate Change (IPCC) think so.

In my role as a professor of energy engineering and my previous stern warnings about our dangerously low rate of progress in reducing carbon emissions, you can imagine that I had been eagerly anticipating last Sunday’s release of the IPCC’s Synthesis Report.

Continue reading

Energy saving no longer an option for business (Day 144)

Sea of bureaucracy‘Red tape’ is always a hot topic in business and political circles. Governments talk about it and set targets in their manifesto pledges to win votes. Big business spends a lot of time and money lobbying to avoid it. Regulators spend their time trying to impose it (and remove it).

The issue of red tape can lead to some strange and unusual headlines. Recently, apparent ‘red tape’ came under the spotlight in the news in relation to a European Union directive on vacuum cleaners. Sadly, the headlines missed the point.

Some regulations and legislation, however painful to business, are necessary and show the right leadership.

The EU’s Energy Efficiency Directive (EED) is one that attempts to show the way forward.

Continue reading

‘School report’ on saving the planet (Day 130)

Barack Obama and Ban Ki-moon - Frederic Legrand - Shutterstock.com

Barack Obama and Ban Ki-moon. Photo credit: Frederic Legrand – Shutterstock.com

Earlier this year, I went on record as saying that: ‘We are sleep-walking into a catastrophic climate change future’.

It was a statement I made in response to the Intergovernmental Panel on Climate Change’s report: Climate Change 2014: Impacts, Adaptation, and Vulnerability.

My perception was that ‘short-term energy policies and ‘political fiddling’ were failing to provide the solutions needed – and fast enough’.

With these thoughts in mind, I was very interested in the outcomes of the United Nation’s Climate Change Summit 2014 held last week. Further down, I’ve ‘graded’ the summit in the form of a school report.

Continue reading

The threat of energy paralysis (Day 128)

LightbulbThere has been a great deal of reflection over the past few weeks about the Scottish Independence Referendum.

With 97 per cent of the electorate in Scotland registering to vote, and an eventual turnout of 85 per cent, it was a triumph for democracy and public engagement.

At the same time, it was a major wake-up call to many politicians who have rarely experienced the huge level of interest in their ‘day jobs’. In fact, arguably, many politicians were shown how to do their jobs better.

Some ‘leaders’ even tried to side-track the politicians, by building websites using independent assessments from leading experts around the world. Continue reading

Economics, memory loss and climate change (Day 118)

Memory lossIf you’ve encountered the concept of organisational memory loss, you’ll know how frustrating and costly it can be.

We often use the concept in relation to process safety when we fail to learn the lessons of the past to catastrophic effect.

A few days ago I wrote a blog called No time to wait in relation to climate change.

I thought I’d return again quickly to the same topic to show how the knowledge, lessons and messages from the past can easily slip away into inaction – especially as the United Nation’s Climate Change Summit is being held tomorrow in New York.

Continue reading

No time to wait (Day 116)

Coal Power StationWhether we like it or not, energy from fossil fuels is going to be needed for around another two generations.

It is not a comforting thought to think that our descendants born in 30 or 40 years time may be left with the legacy of not acting now to mitigate the effects of climate change.

We need to press ahead with building capacity for renewable energy. There’s also no time to waste to implement carbon capture and storage (CCS) technology for the hundreds of fossil fuel power stations that will still need to be constructed in the meantime. Without CCS, it is unlikely we’ll get anywhere near the Kyoto targets.

Continue reading

Using aerosols to understand our cloud atlas (Day 86)

When most people think of aerosols they think of spray cans.

Coverage by the media in the 1980s and 1990s of aerosols damaging the ozone layer drove this thinking. However, it is just one type of aerosol or “atmospheric particulate”, cholorofluorocarbons (CFCs), that was causing this damage.

Countries are now phasing out the use of CFCs in line with international protocols.

Aerosols are actually just small particles found in the air that can be produced when we burn different types of fossil fuels.

Low-level clouds along the California coast

Low-level clouds along the California coast are visible in this July 26, 2014 image from the NOAA/NASA Geostationary Operational Environmental Satellite (GOES)-15 satellite. Credit: NASA-Goddard Space Flight Center, data from NOAA GOES

Studying aerosols could help us better understand the Earth’s changing climate.

Continue reading

The lesser known hydrocarbon (Day 55)

Frozen shore lineWalk up to any typical man or woman in the street and ask them where their energy comes from to power their homes, cook their food, keep the cold out and fuel their cars and you’ll probably get a very long list of answers.

If you posed the question, what power source has more energy in it than all the world’s oil, coal and gas put together, only a few are likely to get the right answer.

In fact the answer is gas hydrates – the lesser known hydrocarbon. Otherwise known as fire ice and more loosely termed methane hydrate, the gas presents as ice crystals with natural methane gas (and other gases) locked inside.

Continue reading

Doing the right thing (Day 48)

Climate ChangeThe right thing to do is not necessarily the cheapest when it comes to saving our planet.

That’s certainly the case for mitigating climate change.

Recently, in my monthly poll, I asked the question – Are people willing to pay more for energy to mitigate climate change? (you can vote at the bottom of this blog too).

So far the poll is indicating that nearly 60 per cent are happy to pay more.

Continue reading

Will energy always be so unpopular? (Day 45)

CoalIt helps to have thick skin if you’re involved in the energy sector. Although demonised may be too strong a word, large chunks of the energy sector does seem to be dogged by negativity, fear and distrust.

Shale gas extraction by hydraulic fracturing or ‘fracking’ invokes worries about earth tremors and contaminated water supplies. Nuclear energy attracts concerns over cost and safety. Renewable energy infrastructure like tall wind turbines are on the receiving end of vociferous community lobby groups. Energy production is inextricably linked to climate change. All these issues are regular frequenters in the media’s column inches.

Continue reading

Big plans for minnows of nature (Day 35)

How inventive are chemical engineers and how could you measure their inventiveness? It’s a bit of a rhetorical question and one that probably doesn’t need an answer, but it did cross my mind the other day when I received an email from IChemE promoting a Webinar about microalga Dunaliella by the University of Greenwich in the UK.

The University are leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable raw material and turn every part of the alga into something useful.

In fact, they are looking at potential products including food, pharmaceuticals, plastic and fuel. This is unlikely to be a surprise to anyone who is part of the chemical engineering ‘family’, but probably something relatively unknown in the wider world.

Continue reading