Making renewables work through energy storage and grid management #COP21

solar power plantIn order to deliver a low carbon economy, we must move away from our current low efficiency, high carbon energy system. Our new energy system must be much more efficient, and low carbon.

This will mean abandoning the linear system of large scale, centralised energy production from fossil fuels.

The replacement should be a non-linear system where electricity is produced at widely distributed sites, at various scales, using renewable sources of energy.

To meet base load power demand, this system will need to combine fossil fuels with carbon capture and storage (CCS), and other sources of energy – such as nuclear.

This future low carbon energy system can only work if the way we generate and consume energy becomes much more flexible, and is able to respond rapidly to external weather and price fluctuations.

Matching supply with demand, particularly when a significant proportion of electricity is being generated by intermittent renewable sources, such as wind and solar, will require energy storage.

Continue reading

The future of nuclear power generation #COP21

Nuclear power is already playing a vital role in decarbonising the global energy economy. Its capacity to provide base load power makes it a stable and low-carbon energy supply.

Nuclear power provides approximately 11 per cent of the world’s energy. In the UK, nuclear power generation makes up 19 per cent of the energy landscape. The proportion is much higher in France, at 75 per cent.

Thorp reprocessing plant - Sellafield Ltd

Thorp reprocessing plant – Sellafield Ltd

However, there are still significant public concerns over the safety and environmental impacts of nuclear power, and the legacy issues of waste. These concerns mean there is often very little support for new nuclear power plants.

As we move to a low carbon future nuclear, new build will have to play an even bigger part in the energy strategies of many governments, because nuclear doesn’t emit carbon dioxide during power generation.

Continue reading

Sustainable bioenergy can dramatically reduce global carbon emissions #COP21

The COP21 talks in Paris came to a turning-point on Saturday, as an update to the draft agreement was released. Finance appears to be the over-riding issue as we settle in to the second week of the conference – but what about the solutions?

Did you know that more than half of the world’s annual carbon emissions could be prevented over the next 50 years by using sustainable bioenergy?

shutterstock_112362932

According to research by Pacala and Socolow, outlined by the IChemE Energy Centre, 25 billion tonnes of carbon emissions can be prevented from entering the atmosphere – simply by switching from fossil-based petroleum to bioethanol as our primary transportation fuel.

So why aren’t we using it already?

The raw materials used in bioenergy production – food crops like maize and sugarcane – come with a lot of associated challenges. Food crops are by no means guaranteed; a bad season could have a detrimental effect, particularly in developing countries who rely on their crops as a means of livelihood. Concerns about the economical implications for developing countries have already been raised in Paris – and could be a deal-breaker for alternative fuels like bioenergy.

Continue reading

Carbon capture and storage is part of the climate solution #COP21

Bulbs and energyThe world’s population is expected to exceed nine billion by 2050. With this growth there will be an increasing demand for energy.

As it stands, fossil fuels provide more than 85 per cent of the world’s energy. And despite significant global efforts to shift to renewable energy generation, renewable sources only accounted for 2 per cent of the global energy supply in 2014.

It is therefore logical and reasonable to believe that fossil fuels will remain an indispensable part of the world’s energy landscape until at least the end of this century.

Climate Change - sliderAt COP21, representatives from over 190 countries will try to reach an agreement to limit global warming to the two degrees target, and this will involve stabilising atmospheric COconcentrations at a level of 450 parts per million (ppm).

So what does this mean? For fossil fuels, it means we need to decarbonise electricity production; and carbon capture and storage (CCS) is a readily deployable technology solution to do this.

Continue reading

Why are we wasting so much energy in industry? #COP21

shutterstock_274012796Yesterday we outlined the IChemE Energy Centre’s five priority topics for focus at COP21 to help solve the global climate change challenges we face today.

The first is energy efficiency, a central part of ensuring we maximise the energy we produce to reduce both waste and harmful emissions.

The need to improve energy efficiency is perhaps one of the easiest topics to get a consensus on, and it will form an imperative part of an effective agreement at the Paris climate talks over the next week.

The numbers speak for themselves. The 2012 Global Energy Assessment revealed that 66 per cent of the energy produced today is wasted. For the chemical process industries and the chemical engineering sector, the implications of this statistic are huge.

Continue reading

Chemical engineers can help solve the climate challenge #COP21

COP21 logoThis week saw the start of the 21st Conference of Parties, COP21. More than 190 countries and 150 global leaders have gathered in Paris, France, to discuss a new global agreement on climate change.

The United Nations (UN) event will host around 40,000 people and runs right through until the end of next week (11 December).

The future of the natural world, and the animals and plant life that call it home, depends on the outcome of this conference. If we don’t limit global warming to 2 degrees, the consequences will be catastrophic.

Polar bearWhilst we cannot accurately predict the scale of any potential impacts now, what we do know for certain is that climate change is happening, and we have a responsibility to reduce any further damage.

Chemical engineers are part of the solution, and the IChemE Energy Centre has identified five priority areas where technology can be deployed now to help mitigate climate change.

Continue reading

Why join IChemE?

We hope you have been keeping up with our ChemEngProfiles video blogs. Over the last few weeks, we have shared the stories of twenty chemical engineers – at various stages in their careers, and working for some of the biggest companies in the world.

Last week we gave you ‘Five powerful reasons to be a chemical engineer at Shell’, following the success of our previous posts – ‘Five sweet reasons to be a chemical engineer at Mondelez’, ‘Five great reasons to be a chemical engineer at BP’, and ‘Five great reasons to be a chemical engineer at Syngenta’. So what’s next?

The thing that our interviewees had in common was that they are all IChemE members, and they view membership as an important addition to their CV.

IChemE_10mm_RGBIn today’s post we’ve turned the spotlight on ourselves – IChemE, the global professional membership organisation for chemical, biochemical and process engineers.

Continue reading

Five powerful reasons to be a chemical engineer at Shell

Over the past few weeks we have been sharing real-life experiences of IChemE members, working at some of the world’s most innovative organisations. So far, our ChemEngProfiles video blogs have covered: ‘Five great reasons to be a chemical engineer at Syngenta‘, ‘Five great reasons to be a chemical engineer at BP‘, and most recently, ‘Five sweet reasons to be a chemical engineer at Mondelez’.Royal_Dutch_Shell

Today we turn our attention to Shell – one of the six oil and gas ‘supermajors’ and an IChemE Gold Corporate Partner. Through oil and gas exploration, production, refinement and distribution, Shell makes it possible for us to heat our homes, fuel our cars and cook our food.

But what is it like to be a chemical engineer at one of the world’s most valuable companies?

Exciting, diverse, challenging – maybe all of the above? Check out our latest ChemEngProfiles videos to find out.

(1) You work on meaningful projects that affect various stakeholders, right from the start.

Carlyn Greenhalgh, a process improvement practitioner at Shell, loves the complexity of chemical engineering. She explains how she went from University, to working on a production site with her own unit. Her pilot plant is now being manufactured and sold worldwide.

Continue reading

Five sweet reasons to be a chemical engineer at Mondelez

If you’re an avid follower of this blog (and you really should be!), then by now you will be familiar with our series of ChemEngProfiles video blogs. We’ve had two so far: ‘Five great reasons to be a chemical engineer at Syngenta‘ and ‘Five great reasons to be a chemical engineer at BP‘.

From practical problem solving at BP to travelling the world with work for Syngenta, it’s clear to see that life as a chemical engineer brings great benefits and opens up a world of opportunities.

mondelez bannerToday it’s time to shine a spotlight on the lads and lasses at Mondelez International – one of the world’s largest confectionery, food and beverage companies. Their products and brands, including  Cadbury, Philadelphia and Oreo fill the shelves in shops and supermarkets all over the world.

So what’s it like to be a chemical engineer at Mondelez?

Are they the modern day Willy Wonkas? Check out the videos and find out for yourselves:

(1) Chemical engineers at Mondelez work out new and inventive ways to produce more with less

Benjamin Hodges, a graduate trainee at the Mondelez Bourneville factory in Birmingham, UK, talks about the demands on a chemical engineer in the food industry – from reducing waste  to increasing raw material yield:

Continue reading

Five great reasons to be a chemical engineer at BP

Earlier this week, we launched the first in a new series of ChemEngProfiles video blogs.  Our good friends at Syngenta started the ball rolling and you can check out their stories in ‘Five great reasons to be a chemical engineer at Syngenta‘. But it’s not only chemical engineers at Syngenta who want to share their passion for the profession and we’ve got lots more in the pipeline.

BP logo - BP Hummingbird...Today we’re featuring a diverse group of chemical engineers from BP – an IChemE Gold Corporate Partner and one of the word’s six ‘supermajor’ energy companies.

We’re all familiar with the big energy challenges confronting humanity 21st century. Chemical engineers are on the front line in the battle to deliver affordable, secure and sustainable energy supplies and IChemE members at BP are no exception.

But don’t take our word for it, check out these video clips from the boys and girls at one of the world’s leading international oil and gas companies. 

(1) Protecting the planet by switching to biofuels

Aidan Hurley is a Chief process safety engineer at BP Alternative Energy. Here he’s talking about his work with biofuels and how, as a chemical engineer, he is developing solutions to the challenges associated with energy including climate change:

Continue reading

Five great reasons to be a chemical engineer at Syngenta

You’ll probably know by now that IChemE exists to advance chemical engineering worldwide and the reason is a simple one – chemical engineering matters. As such, it’s important  to highlight some areas where the Institution and its 42,000 members make a difference.

Graduation hatsThe first is to inspire the next generation of chemical engineers, particularly young women. Because let’s face it, who else is going to solve the grand challenges of the 21st century and beyond?  And the more diverse the chemical engineering workforce, the better.

Next, we need to promote the wide variety of careers available within the broad spectrum of chemical engineering to improve graduate retention in the process industries.

Finally, we need to stress the importance of achieving chartership and continuing professional development (CPD) throughout a fruitful and rewarding chemical engineering career.

And what better way to do this than to hear it straight from the horse’s mouth? Through our ChemEngProfiles videos, you can listen to our members share their passion for chemical engineering.

syngenta bannerToday’s blog focusses on what it’s like to be a chemical engineer at Syngenta – one of the world’s leading agrochemical companies and also one of IChemE’s Bronze Corporate Partners.

So without further ado, here’s five reasons to be a chemical engineer at Syngenta:

(1) You can be responsible for making a process profitable

Dan Clarke, a process engineer at Syngenta, explains how chemical engineers are usually the ones who make a process profitable. Listen to him talk agitators, scale-up and scale down here:

Continue reading

ChemEng makes the wheels go round

Photo Credit | Radu Razvan / Shutterstock.com

Photo Credit | Radu Razvan / Shutterstock.com

Over the last few years, cycling has seen a meteoric rise in both popularity and participation. Its most gruelling and testing competition, the Tour De France, drew to a close last month with another British victory.

So it seems quite apt to share how chemical engineering plays a part in this sport.

The phrase ‘chemical engineering in cycling’ may raise a few eyebrows. Indeed, some of the ways in which competitors have broken the rules can be – if you’re able to discount the morality of the outcome – seen as impressive feats of human engineering.

I’m sure you’ve heard of blood doping, where athletes improve their aerobic capacity and endurance through either one of the two following ways:

Continue reading

Your ChemEng research round-up: June 2015

Since ChemEng365, our new ChemEng blog has become a little quiet – except for a last minute hurrah from Geoff Maitland, see his guest blog ‘Five of our Past President’s favourite ChemEng365 blogs‘.

lightbulbThe ChemEng365 campaign concluded at the end of May when Geoff’s term as president ended. But of course, all the amazing chemical engineering research and innovation still goes on. So, it seems only fitting to give you a research round-up on all things chemical and process engineering for the month of June – just in case you missed anything!

Injectable hydrogel could help wounds heal more quickly

A team of chemical engineers from the University of California, Los Angeles (UCLA), US, have a developed a material that creates an instant, superior scaffold that allows new tissue to latch on and grow within the cavities formed between linked spheres of gel.

Continue reading

Five of our Past President’s favourite ChemEng365 blogs

IChemE’s immediate past president, Geoff Maitland, handed over the presidential chains to Dr Andrew Jamieson at the end of May. You can read about this year’s presidential address by Andrew here.

So to kick-start our new ChemEng blog, the blog elves thought it only appropriate to welcome back blog-elf-in-chief and ChemEng365 blogger, Geoff Maitland, to pick his top five blogs from the past year.


geoff maitlandName: Geoff Maitland
Job: Professor of Energy Engineering
Course: Chemistry, University of Oxford, UK
Graduated: 1969
Employer: Imperial College London, UK

Quote startLast month saw my last ever ChemEng365 blog posted online. It was both a sad and happy day for me. Sad that my time as IChemE president and blogger was over, but happy that we have managed to achieve so much and reach so many people in just 365 days.

To keep that momentum going, I hope you will join me in supporting IChemE’s blog elves as they re-launch the blog as – the ChemEng blog (the name was voted for in my recent poll – see ‘Tell me your thoughts on IChemE’s blogging future #ChemEng365’).

Continue reading

Thank you and goodbye!

Video

Now that my blogging days as IChemE President are over, I’d like to say a heart felt thank you and goodbye to all my ChemEng365 readers and followers. So I’ve recorded a farewell message for you to watch:

Thank you for shining a light on chemical engineering with me. Goodbye!

One year, 365 days blogging as IChemE President (Day 365)

And then there was one…

Andrew Jamieson, IChemE President 2015-2016; and myself, Geoff Maitland, IChemE President 2014-2015

(L-R) Dr Andrew Jamieson, IChemE President 2015-2016; and myself, Geoff Maitland, IChemE President 2014-2015

Well here we are. It’s the final day of the ChemEng365 blog and last night I handed over the chains of office to my successor, Dr Andrew Jamieson.

Aided and abetted by my team of loyal ‘blog elves’, it’s been quite a journey. But I hope you’ll agree with me that we’ve made a pretty good fist of my original ambition, which was to shine a light on chemical engineering on every single day of my presidency.

It’s been great fun and I trust that you have been impressed at the seemingly endless supply of chemical engineering good news that has been aired via my blog over the last twelve months.

The stories will remain here to provide an enduring resource for anyone who wants to find out more about what chemical engineers get up to. So when you come across someone who ought to know more about the profession, send them here!

The search box at the top of the page is a doorway to the richness and diversity of chemical engineering.

Continue reading

Two disciplines: chemistry and chemical engineering matter together (Day 364)

Today is Day 364, the penultimate day of my blog and just two days left to shine a light on chemical engineering.

So I want to take the opportunity to talk about the important relationship between chemistry and chemical engineering before time runs out on ChemEng365.

Element cubesMy most popular blog over the course of this year has been ‘Ten differences between chemistry and chemical engineering’ and I hope that this has helped to clarify the differences between the disciplines.

However, it is also important to note that chemistry and chemical engineering are interdependent and must work together. I have made it part of my focus as president of IChemE to build further on our strong relationship with the Royal Society of Chemistry (RSC).

I am proud to have started out my career studying chemistry at the University of Oxford, UK, however, I am also now proud to be a chemical engineer and to have spent my presidential year promoting the fact that chemical engineering matters.

But let’s not forget that chemistry matters too.

So I’m going to use today’s blog to highlight two world-changing collaborations between chemists and chemical engineers, which illustrate the importance of the relationship really is.

Continue reading

Three is the magic number for chemical engineering education (Day 363)

Today is Day 363 and the end of my time in the blogosphere is getting closer. I have just three days left to shine a light on chemical engineering.

And since three is the magic number, according to the music of Schoolhouse Rock and De La Soul, I think it’s fitting to focus on three topics that underpin an excellent chemical engineering education. A sound knowledge of these topics, coupled with an ability to apply them in a practical setting, is a key part of the learning outcomes from an IChemE accredited degree course of which there are over 200 on offer in 60 university departments in 13 countries.

It’s fair to say that without a fundamental grounding in core chemical engineering principles, none of the achievements that I have described over the last twelve months would have been possible. And whilst this is not an exhaustive list, I’ve attempted to distil the richness of our profession into just three topics – topics that no chemical engineer can live without.

I’d be interested to hear if you agree with my three choices and, because there is no right or wrong answer in a debate like this, readers should feel free to disagree – and comment on the blog.

Without further ado, here are my top three topics:

1. Thermodynamics

Thermodynamics is the branch of physics concerned with heat and temperature and their relation to energy and work. It defines macroscopic variables, such as internal energy, entropy and pressure, that partly describe a body of matter or radiation.

It’s a rite of passage for first year chemical engineering undergraduates to get to grips with the laws of thermodynamics – and seemingly endless hours spent looking at steam tables!

pic to represent thermodynamics

Thermodynamics is an essential part of chemical engineering.  We need to understand how energy is transferred within a system and to its surroundings. Without it, we wouldn’t be able to analyse or design a chemical process. One the first stages of designing a process from concept phase is performing a material and energy balance. It’s a tough topic, but we’d be sunk without it.

Continue reading

Four horsemen of the apocalypse – four challenges for chemical engineers (Day 362)

Day 362, four blogs to go. Four more opportunities to highlight chemical engineering in action.

In the Christian tradition, the four horsemen of the apocalypse are the harbingers of the end of the world.

Other faiths offer different views, but for the purposes of this blog post I’m taking a look at four big challenges that present a serious threat to life on earth: water scarcity; increasing energy demand; food security; and climate change. What are chemical  engineers doing to tackle these issues and avert the apocalypse?

perfect stormI have previously observed that we run the risk of sleep-walking towards climate catastrophe. But it’s more complicated than that. The water, energy, food and climate change challenges are interrelated. The former Chief Scientific Adviser to the UK Government, Sir John Beddington, used the term Perfect Storm to describe this phenomenon arguing that climate change will intensify pressure on resources further, adding to the vulnerability of both ecosystems and people.

Chemical engineering can provide shelter from John’s ‘Perfect storm’.  Here are some examples.

Continue reading

Five projects that raise the profile of chemical engineering (Day 361)

Day 361 – five days and counting.

During my year as novice blogger, I’ve been made aware of many excellent projects involving outreach that raise the profile of our profession to the public, and in particular, to school children.

This blog post highlights five initiatives that will inspire a new generation of chemical engineers, as well as promoting the value of engineering to a wider audience:

1. Pint of Science

pint of science beer mat

Pint of Science beer mats

The Pint of Science festival is an annual event, held over three days, that takes place in pubs across the world. During the festival, researchers and experts in their field discuss their latest scientific work over a drink. Pint of Science has grown year on year since its inception in 2012 by two research scientists, Michael Motskin and Praveen Paul, at Imperial College London, UK.

This year I was invited to take part – and in return I was promised a free pint!  Well how could I refuse?  I’m a big fan of science communication and public engagement – the free pint had nothing to do with it!

Continue reading

Six continents but why don’t penguins read my blog? (Day 360)

Day 360, six days of blogging to go.

Prior to starting this blog I had already attracted a reputation as a keen advocate for the positive benefits of chemical engineering; perhaps as a result of my media appearances following the Deepwater Horizon incident in 2010. My interventions were driven by a desire to react positively to what was clearly very bad news.

I wanted to use my presidency to do something more proactive. I wanted to find a way of shining a light on some chemical engineering good news on a daily basis, but I wasn’t entirely sure how to go about it – until I was told, “Get blogging Geoff!”

Once I’d figured out what blogging entailed, the idea started to take shape. A pipeline of stories was developed and ChemEng365 was born.

360 days later, I have been amazed at the extent of the readership that the blog has attracted. Here are some numbers for you:

The blog has been viewed more than 250,000 times by over 75,000 people in 180 countries. The top five countries, in terms of readership, will not come as a surprise: UK; US; India; Malaysia; and Australia. This is broadly in line with IChemE’s membership and the extent of chemical engineering activity around the world.

Readership of the #ChemEng365 blog

Heat map illustrating the global readership of the ChemEng365 blog

The list of countries where I have gathered just a single follower is far more exotic; the blog has been read in Aruba, Curacao, the Faeroe Islands and New Caledonia to name just a few of the far flung territories that have popped up in the analytics.

ChemEng365 has a following in six continents: Asia, Africa, North America, South America, Europe and Australasia. But there are seven continents in total – Antarctica is missing?

This begs the question: ‘Why don’t penguins read my blog?‘ Maybe it’s because their flippers are too big for a computer keyboard! Or maybe it’s because I haven’t blogged about Antarctica just yet.

Here are my favourite blog stories from six continents:

Continue reading

Seven Harry Potter spells – it’s not magic it’s chemical engineering (Day 359)

Today is Day 359, and there are just seven days left to shine a light on chemical engineering. So I thought I would try something a little different by highlighting seven Harry Potter ‘spells’ that are all in a day’s work for chemical engineers.

Most people enjoy a little magic, whether that involves reading fantasy fiction, watching a magical movie or even practising a little magic at family gatherings with the words ‘pick a card, any card’.

Credit | mashable.com

Credit | mashable.com

One of the most popular fantasy offerings in a generation is Harry Potter by J.K. Rowling, the epic tale of a boy wizard and his quest to defeat the evil Lord Voldemort.

Harry’s exploits along with his friends at Hogwarts School of Witchcraft and Wizardry have captured the imagination of millions of readers and film-goers around the world.

As a chemical engineer and covert Harry Potter admirer, I thought I would combine the two (with a little help from the mischievous blog elves) and highlight the science and engineering behind seven – the most powerful magical number – spells and potions from the wizarding world:

1. Essence of dittany

You may remember the use of this potion from the final instalment of the series, Harry Potter and the Deathly Hallows, as Ron Weasley ‘splinched’ his arm after ‘disapparating’ to escape the grips of a Death Eater (follower of Lord Voldemort). Essence of dittany, from a plant that produces a healing and restorative properties, and was applied to treat Ron’s injuries – instantly.

Continue reading

Eight ways to demystify chemical engineering (Day 358)

Today is Day 358, and there are just eight days left to shine a light on chemical engineering. One of the driving motives behind this blog has been to find ways to make chemical engineering more accessible to a wider audience.

We sometimes struggle when we have to explain our work to non-chemical engineering friends and family.  But I think I know how to do this and over the years I have found a variety of useful examples to help get the point across.

Here are my eight simple ways to demystify chemical engineering to your friends and family:

1. Turn the lights off

light switchThis is probably the easiest way to demonstrate the power (if you’ll excuse the pun) of chemical engineering. So much of the work we do goes to provide electricity supplies for homes and business worldwide. Without chemical engineering, our lives would be much harder and a lot darker. Turn out the lights and challenge your audience to switch them on again without gas, oil, coal, nuclear or renewable power and a lot of chemical engineering.

Continue reading

Nine ways chemical engineering makes a difference (Day 357)

Today is Day 357, meaning there are just nine days left to shine a light on chemical engineering. I thought today would be a good opportunity for me to select my nine favourite reasons why chemical engineering matters.

I really enjoyed the whiteboard messages that were written at the ChemEngDayUK 2015 conference held earlier this year in Sheffield, so I have chosen my favourite ‘I make a difference’ snapshots to share with you today.

Here are the nine people who use chemical engineering to make a difference:

1. Jon from the University of Bath who makes a difference “by providing safe water to developing countries”.

Jon from the University of Bath

Jon from the University of Bath

Continue reading

Ten chemical engineers that shaped our world (Day 356)

Today is Day 356, meaning there are just ten days left to shine a light on chemical engineering. So I thought I would take the opportunity to countdown some important facts and stories from the wonderful world of chemical engineering in the ten days remaining before the end of ChemEng365.

I’m starting with ten chemical engineers who have truly inspired the chemical engineering community, used their skills to shape the world we live in and improved quality of life for all.

1. George E Davis

George E Davis

Photo Credit | IChemE
George E Davis

George E Davis is often regarded as the ‘founding father’ of chemical engineering, No list of chemical engineers is complete without him. George shaped the world of chemical engineering as it emerged in the late 1800s; with George coining the term ‘chemical engineering’. The first chemical engineering course was delivered by George at the University of Manchester in 1887 in the form of 12 lectures covering various aspects of industrial chemical practice – this kick started the revolution that spawned generations of world-changing chemical engineers.

Continue reading

CCS equals ‘Carbon Capture and Students’ (Day 355)

As regular readers will recognise, I am based at Imperial College London and today, I want to describe some of the work that goes on here.

The Carbon Capture Pilot Plant

Photo Credit | Imperial College London
The Carbon Capture Pilot Plant

I am the Professor of Energy Engineering, in the Department of Chemical Engineering, and much of my research is now built around carbon capture and storage (CCS). I’d like to tell you a little more about the work on carbon capture here at Imperial, with particular focus on our carbon capture pilot plant.

The carbon capture pilot plant is so big that it stretches over four floors of our building, right at its centre – which is pretty impressive for a university pilot plant and helps provide a sense of scale for the real thing.

The pilot plant provides our students with an opportunity to grapple with some of the practical challenges that they will encounter in industry. It certainly presents the opportunity to hone a few of the skills that might prove useful in the  future.

Continue reading

Shining a UV light to separate rare earth metals (Day 354)

There are 17 rare earth metals in the periodic table, but they are not ‘rare’ because of a lack of abundance – they are rare because they are usually found dispersed in small amounts.

Photo Credit | periodictable.com

Photo Credit | periodictable.com

These rare earth metals find use in many modern day applications ranging from healthcare and electronics, to computers and advanced transportation. Two rare earth metals that are particularly useful in sustainable technology and high-tech applications – europium and yttrium.

Europium and yttrium are difficult to mine but they can be recycled and recovered from another source – red lamp phosphor (a powder used in fluorescent lamps and low energy light bulbs).

Chemical engineers from the University of Leuven (KE Leuven), Belgium, have developed a method that recycles the red lamp phosphor as well as separates the rare earth metals, europium and yttrium, from a mixture using UV light.

Continue reading

The wisdom of Trevor Kletz – the ‘founding father’ of inherent safety (Day 353)

Trevor Kletz

Photo Credit | tce
Trevor Kletz

The name, Trevor Kletz, needs little introduction to anyone who has been involved with chemical process safety over the past forty years. Trevor died in 2013 at the age of ninety.

He is greatly missed but his impact on the chemical engineering profession was enormous and his name is rarely uttered along without the words ‘hero’ or ‘guru’ as well as ‘teacher’, ‘mentor’ or ‘friend’, in the same breath.

Trevor spent his entire career at ICI (Imperial Chemical Industries), and by the time of his retirement in 1982 he had created a safety culture within the company with a major positive impact on accident statistics.

This success was attributed to his powerful intellect on one hand, but also to his exceptional communication skills. Trevor’s ability to reduce complicated issues to simple fundamentals was the stuff of legend.

Continue reading

Planning for the future – say YES (Day 352)

Throughout my blog, I have highlighted some important chemical engineering innovations.  I wanted to shine a light on the valuable contribution that my profession makes to the world around us.

Some of the most important work that we do isn’t just using our technical knowledge; it’s talking to the next generation of chemical engineers and sharing that knowledge.

My first work experience of industrial chemistry and engineering, a summer job at Podmore and Sons pottery in Stoke-on-Trent, UK, sparked an interest that shaped my future career.

Amec Foster Wheeler LogoBeing exposed to different careers can give a taster for chemical engineering. These experiences can spark excitement and interest that can grow into a fruitful career.

With this in mind, IChemE is proud to support an initiative run by Amec Foster Wheeler. The Amec Foster Wheeler Young Engineers Scheme (YES) has been developed by the company’s engineering teams in Reading, UK, to encourage student involvement in engineering.

Continue reading

A breath of fresh air (Day 351)

Chemical engineering has to be one of the most creative of all professions. We look for opportunities in everything, even in the air that surrounds us.

In the early 20th century, Carl von Linde pioneered the process of air separation, splitting air into its pure components. He developed a technique to obtain pure oxygen and nitrogen by means of fractional distillation from liquefied air.

Since then, air separation has been applied to many products we use every day. In February, I attended an IChemE event at the University of Surrey. During the event, I met Jama Salimov, an Advanced Process Control Engineer at Air Products. Jama was keen to shine a light on his work in air separation and ensure that we all understand its many applications.

liquid nitrogen

Liquid Nitrogen

Air separation typically separates air into its primary components – nitrogen and oxygen. However, it can also isolate some of the more rare parts of the air such as argon.

The products of air separation have a wide variety of uses in our everyday lives. Many of us use them without even realising it – and Jama was keen to tell me all about them.

Continue reading

The life of a Brewer (Day 350)

I was so impressed with today’s guest blogger’s recent webinar (arranged by IChemE’s Food and Drink SIG) I got in touch with him to ask about his work and why he became a chemical engineer. Thomas Brewer works in the food industry for SABMiller as an engineering consultant.

He has had an interesting career path, so I’ll let him explain it in more detail:


Tom BrewerName: Thomas Brewer
Job: Engineering Consultant
Course: Chemical engineering (MEng), University of Cambridge
Graduated: 1998
Employer: SABMiller

 

Quote startI am perhaps unusual amongst our profession as I knew from a very early age that I wanted to be a chemical engineer. At about the age of 11, I was becoming more aware of the world around me and noted the science articles about Brazil, the oil crisis and biofuels in newspapers. I decided chemical engineering would help me be a part of the solution and give me an opportunity to make an impact.

If asked what today’s big challenges are, I would say we already recognise the issues around water and energy and we are going to have to deal with protein. Every day our society downgrades or throws away protein, we need to get better at valuing it for what it is.

Continue reading