Five powerful reasons to be a chemical engineer at Shell

Over the past few weeks we have been sharing real-life experiences of IChemE members, working at some of the world’s most innovative organisations. So far, our ChemEngProfiles video blogs have covered: ‘Five great reasons to be a chemical engineer at Syngenta‘, ‘Five great reasons to be a chemical engineer at BP‘, and most recently, ‘Five sweet reasons to be a chemical engineer at Mondelez’.Royal_Dutch_Shell

Today we turn our attention to Shell – one of the six oil and gas ‘supermajors’ and an IChemE Gold Corporate Partner. Through oil and gas exploration, production, refinement and distribution, Shell makes it possible for us to heat our homes, fuel our cars and cook our food.

But what is it like to be a chemical engineer at one of the world’s most valuable companies?

Exciting, diverse, challenging – maybe all of the above? Check out our latest ChemEngProfiles videos to find out.

(1) You work on meaningful projects that affect various stakeholders, right from the start.

Carlyn Greenhalgh, a process improvement practitioner at Shell, loves the complexity of chemical engineering. She explains how she went from University, to working on a production site with her own unit. Her pilot plant is now being manufactured and sold worldwide.

Continue reading Five powerful reasons to be a chemical engineer at Shell

Five great reasons to be a chemical engineer at BP

Earlier this week, we launched the first in a new series of ChemEngProfiles video blogs.  Our good friends at Syngenta started the ball rolling and you can check out their stories in ‘Five great reasons to be a chemical engineer at Syngenta‘. But it’s not only chemical engineers at Syngenta who want to share their passion for the profession and we’ve got lots more in the pipeline.

BP logo - BP Hummingbird...Today we’re featuring a diverse group of chemical engineers from BP – an IChemE Gold Corporate Partner and one of the word’s six ‘supermajor’ energy companies.

We’re all familiar with the big energy challenges confronting humanity 21st century. Chemical engineers are on the front line in the battle to deliver affordable, secure and sustainable energy supplies and IChemE members at BP are no exception.

But don’t take our word for it, check out these video clips from the boys and girls at one of the world’s leading international oil and gas companies. 

(1) Protecting the planet by switching to biofuels

Aidan Hurley is a Chief process safety engineer at BP Alternative Energy. Here he’s talking about his work with biofuels and how, as a chemical engineer, he is developing solutions to the challenges associated with energy including climate change:

Continue reading Five great reasons to be a chemical engineer at BP

Your ChemEng research round-up: June 2015

Since ChemEng365, our new ChemEng blog has become a little quiet – except for a last minute hurrah from Geoff Maitland, see his guest blog ‘Five of our Past President’s favourite ChemEng365 blogs‘.

lightbulbThe ChemEng365 campaign concluded at the end of May when Geoff’s term as president ended. But of course, all the amazing chemical engineering research and innovation still goes on. So, it seems only fitting to give you a research round-up on all things chemical and process engineering for the month of June – just in case you missed anything!

Injectable hydrogel could help wounds heal more quickly

A team of chemical engineers from the University of California, Los Angeles (UCLA), US, have a developed a material that creates an instant, superior scaffold that allows new tissue to latch on and grow within the cavities formed between linked spheres of gel.

Continue reading Your ChemEng research round-up: June 2015

Four horsemen of the apocalypse – four challenges for chemical engineers (Day 362)

Day 362, four blogs to go. Four more opportunities to highlight chemical engineering in action.

In the Christian tradition, the four horsemen of the apocalypse are the harbingers of the end of the world.

Other faiths offer different views, but for the purposes of this blog post I’m taking a look at four big challenges that present a serious threat to life on earth: water scarcity; increasing energy demand; food security; and climate change. What are chemical  engineers doing to tackle these issues and avert the apocalypse?

perfect stormI have previously observed that we run the risk of sleep-walking towards climate catastrophe. But it’s more complicated than that. The water, energy, food and climate change challenges are interrelated. The former Chief Scientific Adviser to the UK Government, Sir John Beddington, used the term Perfect Storm to describe this phenomenon arguing that climate change will intensify pressure on resources further, adding to the vulnerability of both ecosystems and people.

Chemical engineering can provide shelter from John’s ‘Perfect storm’.  Here are some examples.

Continue reading Four horsemen of the apocalypse – four challenges for chemical engineers (Day 362)

CCS equals ‘Carbon Capture and Students’ (Day 355)

As regular readers will recognise, I am based at Imperial College London and today, I want to describe some of the work that goes on here.

The Carbon Capture Pilot Plant
Photo Credit | Imperial College London
The Carbon Capture Pilot Plant

I am the Professor of Energy Engineering, in the Department of Chemical Engineering, and much of my research is now built around carbon capture and storage (CCS). I’d like to tell you a little more about the work on carbon capture here at Imperial, with particular focus on our carbon capture pilot plant.

The carbon capture pilot plant is so big that it stretches over four floors of our building, right at its centre – which is pretty impressive for a university pilot plant and helps provide a sense of scale for the real thing.

The pilot plant provides our students with an opportunity to grapple with some of the practical challenges that they will encounter in industry. It certainly presents the opportunity to hone a few of the skills that might prove useful in the  future.

Continue reading CCS equals ‘Carbon Capture and Students’ (Day 355)

Make your voice heard – vote! (Day 345)

If you are reading this in the UK – still home to around half of IChemE’s members – I’m sure you are aware that a General Election is taking place today.

IChemE is politically neutral and it adopts an independent position on issues that are viewed as partisan. However, the institution believes that political decisions should be evidence-based and supported by the strongest possible input from the engineering community. That’s why it’s important to engage with politicians and to express a view.

So for today’s blog post, I’ve asked IChemE CEO, Dr David Brown, to share his thoughts on the need for chemical engineers to influence policymakers, not only in the UK but around the world.

I’ll let David take it from here:


David Brown

Name: Dr David Brown
Job: CEO
Course: Natural  Sciences, University of Cambridge
Graduated: MA 1978, PhD 1982
Employer: IChemE

 

Quote startPollsters are predicting that this UK general election will be one of the closest in living memory. In the latest edition of tce (May 2015) I set out my election wish-list for the new UK government covering areas such as education, immigration and climate change.

Whatever the outcome of the election, the government that emerges will undoubtedly have an impact on many areas of the UK economy that rely on chemical and process engineers.

That’s why we need to engage in debates on public policy issues.

Continue reading Make your voice heard – vote! (Day 345)

Solar sanitation solutions (Day 343)

ToiletThe World Health Organization (WHO) reports that  as many as 2.5 billion people around the world do not have access to adequate toilet facilities.

Poor sanitation results in contaminated drinking water and the spread of infectious diseases including Cholera and Dysentery, which cause severe diarrhoea, dehydration and if left untreated, death (see my blog, ‘Everyone should have a human right to water’).

Every year, around 1.5 million people – mostly children under five years old – die from diarrhoea. Drastic action is needed in order to make safe sanitation accessible to all.

Only last week, I observed that we sometimes have a tendency to take things for granted in the developed world. My blog, ‘Chemical engineer develops sanitary towels to help girls stay in school’ was well received and has prompted me to look at some other work by chemical engineers who are making a difference in the developing world.

Continue reading Solar sanitation solutions (Day 343)

Turning packing peanuts* to power (Day 329)

Chemical engineers don’t like waste. We are always looking for ways to use and reuse items that would otherwise be discarded (see my blog ‘Ionic fluids pack a punch for biofuels‘).

At a first glance, some products only have one function. For example, the loose-fill packing peanuts that make shipping fragile items easier.

Packing peanuts normally end up in landfill sites where they remain intact for decades and as they’re difficult to breakdown, only around 10 per cent are recycled in the US.

idea batterySo, researchers from Purdue University, US, did some clever thinking and found a way to convert packing peanuts into carbon electrodes that can outperform the conventional graphite electrodes found in lithium ion batteries.

It all started when Professor Vilas Pol, an associate professor of chemical engineering, and his postdoctoral researcher, Vinodkumar Etacheri, were unpacking boxes filled with instruments for Vilas’ new lab. After emptying the boxes, they had great new lab full of instruments and a surplus of packing peanuts.

Continue reading Turning packing peanuts* to power (Day 329)

World’s first fully transparent solar cell (Day 328)

The UN General Assembly designated 2015 as the International Year of Light. A global initiative to highlight the importance of light and lighting technologies to societal development.

It provides an opportunity to inspire, educate, and connect people on a global scale. It is anticipated that the International Year of Light will inspire people to think of new ideas, new solutions and new products for the future.

transparent luminescent solar concentrator moduleWhich brings me rather neatly to a solar project that caught my eye recently.

Richard Lunt, an assistant professor from the Department of Chemical Engineering and Materials Science at Michigan State University, US, and his team have developed the world’s first fully transparent solar cell.

Continue reading World’s first fully transparent solar cell (Day 328)

Ionic liquids pack a punch for biofuels (Day 327)

In my blog, ‘the sweet smell of success‘, I discussed the use of ionic liquids – salt in a liquid state as a result of poor ionic co-ordination – in perfumes and alluded to other fields of research where they are used. Today I’m delving a little further and shining a light on the use of ionic liquids in biofuels.

PIL-treated corn stover and PIL/lignin
Photo credit | NC State University
PIL-treated corn stover and PIL/lignin

Researchers at North Carolina State University, US, (NCSU) are investigating the use of ionic liquids to strip lignin from plant cells. Their aim is to find a cost-effective method of processing biomass for biofuel production.

Lignin is a complex phenolic polymer that is found in plant cell walls. It plays an important structural role, providing the plant with strength and rigidity due to a cross-linked structure that is difficult to break down. After cellulose, it is the most abundant source of renewable carbon on earth.

Continue reading Ionic liquids pack a punch for biofuels (Day 327)

Engineered yeast on par with conventional fuels (Day 324)

earth on flamesHere’s a question for you. How much fuel do you think you have consumed so far today,?

Whether it’s heating your home, cooking your breakfast, driving your car or using electricity to light up your life – we, as a society, are heavily reliant on non-renewable fuels.

As people become more affluent through global development and industrialisation, their demand for energy grows and the consumption of finite resources accelerates.

This presents chemical engineers with a difficult task – to find and develop new pathways to more sustainable energy consumption. And time is running out.

Over in the US, the main strategy for winning the global race in clean energy technology is through the advancement of biofuels by capitalising on domestic energy resources.

Continue reading Engineered yeast on par with conventional fuels (Day 324)

The world’s biggest oil refinery (Day 315)

CP logos 2014IChemE’s Corporate Partners make a major contribution to the chemical engineering profession and to the world around us. The list of Corporate Partners is growing and it’s worth highlighting some of their success stories in my blog.

Our three-tiered Corporate Partner scheme was launched in 2009 to build links with industry. Corporate Partnership recognises a company’s commitment to engineering excellence, employee professional development and inspiring the next generation.

Bechtel celebrate achieving IChemE gold corporate partner
Bechtel celebrate achieving IChemE Gold Corporate Partner status

Bechtel is a global leader in the design, procurement, construction, and project management of oil, chemical, and natural gas facilities.

They employ 500 chemical engineers worldwide and became a Gold Corporate Partner in 2013. They even baked us a cake to help celebrate!

Since 1898, Bechtel have completed more than 25,000 projects in 160 countries on all seven continents. That’s no mean feat. And recently, they constructed the biggest oil refinery in the world.

Continue reading The world’s biggest oil refinery (Day 315)

Star heat pumps can access energy stored in cold water (Day 312)

Harnessing the energy stored in ice cold water has been highlighted as a potential solution to heat towns and cities without the use of fossil fuels – it’s a great example of chemical engineering making a difference.

Through the use of heat pumps and district heating, lakes and rivers can provide enough energy to heat water to 90°C.

Drammen heat pumps
Heat pumps used in Drammen Star Photo Credit | Star Renewable Energy

Whilst not an obvious source of energy, a district heating company in Drammen, Norway, have managed to use an ice cold fjord to provide hot water to heat an entire community of  65,000 people.

Drammen Fjernvarme (DF) have teamed up with the city council and Glasgow, UK’s Star Renewable Energy to build this efficient district heating system.

Star Renewable Energy are better known for providing refrigeration systems to large retailers. However they were able to think outside the box and offer an alternative heat pump design.

Continue reading Star heat pumps can access energy stored in cold water (Day 312)

Earth Hour, how about Earth Year? Use #YourPower (Day 305)

Tonight at 20:30, all over the world, individuals, companies, government organisations, and possibly even Her Majesty the Queen, will switch off their lights.

03_EH 60+ LOGO_STACKED CLR_JPEGThis symbolic gesture marks Earth Hour, initiated by the World Wildlife Fund (WWF) in 2007 as a lights-off event to raise awareness of climate change.

162 countries and territories worldwide now take part in Earth Hour.

You can get involved and help to raise awareness about climate change by switching off your lights at 20:30 local time for one hour. You can share your thoughts on the climate change challenge on Twitter using #YourPower.

I recently came across the story of one country, Costa Rica,  whose citizens are prepared to go much further in the battle against climate change. Since the beginning of the year, Costa Rica has avoided the use of fossil fuels altogether.

The Costa Rican government recently issued a press release announcing that during the first quarter of 2015, they relied on renewables for 100 per cent of their power generation.

Continue reading Earth Hour, how about Earth Year? Use #YourPower (Day 305)

Nicklin Medal goes to ground-breaking young academic (Day 302)

When a young chemical engineer achieves worldwide acclaim for his work less than five years after gaining his PhD, it certainly brings about a sense of excitement.

Energy Centre Board and Advisory Panel members (L-R): Niall Mac Dowell; Colin Pritchard; Geoff Maitland; and Paul Smith
Niall Mac Dowell (Left) picture with Energy Centre Board and Advisory Panel members (L-R): Colin Pritchard; Geoff Maitland; and Paul Smith

So it gives me great pleasure to congratulate my colleague and friend, Niall Mac Dowell, on receiving IChemE’s Nicklin Medal for 2014. Already, in his short career he has come to be recognised as one of the UK’s top researchers in the area of low carbon energy.

Niall is the only researcher in the world to have published work at the molecular, unit, integrated process and network scales in the context of carbon capture and storage (CCS).

Continue reading Nicklin Medal goes to ground-breaking young academic (Day 302)

Using a calculator to find climate change solutions (Day 301)

Last week I was fortunate to attend a meeting of the IChemE London and South East Member Group to discuss the need  to transform the technologies and fuels we use, and make smarter use of our resources.

city on phoneThe talk was hosted by Dr Tom Counsell from the UK Department for Energy and Climate Change (DECC). Tom gave a highly entertaining introduction to the Global Calculator.

Tom posed a big question: “Can we improve equality of life for 10 billion people and tackle climate change?” A lively debate ensued and I suddenly found myself in a room full of people trying to save the world.

I have always believed that its the job of the chemical engineer to improve quality of life for all and to do it sustainably. However, in recent times I have concluded that we are sleepwalking into a catastrophic climate change future. Serious effort is needed to avert this.

The Global Calculator offers a way to test out our theories and apply solutions to combat climate change.

Continue reading Using a calculator to find climate change solutions (Day 301)

Ten animals that are also chemical engineers (Day 300)

Day 300 and counting.  It’s a nice round number so I thought I’d talk about something a little bit different.

We often assume that engineering is something unique to humankind. However, if you take a closer look at the animal kingdom, you soon realise that this is not the case.

Some animals have been exploiting chemical engineering principles for so long, we are now taking inspiration from them; see my blogs on ’Deep sea printers’ or ‘‘Hand-made’ pills inspired by a starfish‘.

The classic example of an animal engineer is the beaver, behaving like a civil engineer and building dams. This made me curious to find animals that act like chemical engineers and here are my ten favourite examples:

Continue reading Ten animals that are also chemical engineers (Day 300)

Sheffield students win Caribbean field trip (Day 298)

BP logo - BP Hummingbird...BP has been asking STEM undergraduate students across the UK to compete in their annual Ultimate Field Trip competition Since 2010. Teams of three students are asked to propose a solution to real-world global energy challenges.

This year’s challenge was based on water – How to address the effective, efficient and sustainable use of wastewater from the production of oil, gas and biofuels.

Students were tasked with developing a novel technical solution to reduce water usage or find an effective use for water produced from operations.

trinidad and tobagoIt’s hats off to the team from the Department of Chemical and Biological Engineering at the University of Sheffield, UK, who ran-away with the 2015 prize – a two week field trip to visit BP operations in Trinidad and Tobago.

Continue reading Sheffield students win Caribbean field trip (Day 298)

The energy grand challenges and our international Energy Centre launch (Day 297)

Yesterday proved to be a pivotal moment in my presidential year. We successfully launched the Energy Centre and outlined our plans for this new and exciting initiative – inspired by Chemical Engineering MattersIChemE’s technical strategy.

EnergyCentreLogo_HiResI’m going to use today’s blog to explain what the Energy Centre is, what it will do and why it matters to chemical engineers, opinion formers and policy makers around the world.

IChemE is a global organisation, with over 42,000 members in 120 countries. The international launch of our Energy Centre reflected this. We held three simultaneous, video-linked events, with over 60 experts and opinion formers from industry, academia and government, in Brisbane, Kuala Lumpur and London.

Continue reading The energy grand challenges and our international Energy Centre launch (Day 297)

Zeolite makes for a better battery life (Day 291)

zeoliteEarlier this week, I blogged about zeolite and its potential use for a more efficient carbon capture process via adsorption.

And now it seems that applications of zeolite stretches even further – today’s blog focuses on the use of crystalline zeolite membranes to extend battery life for renewable power systems.

Smart grids, along with renewable solar and wind power systems, require affordable and efficient energy storage batteries. The reason for this is rather obvious – renewable energy sources such as wind and solar are intermittent.  Also, there is a need to balance supply and demand.

But the current high cost and short life span of storage batteries are preventing widespread market penetration and economic viability of these renewable systems.

Research led by Junhang Dong, professor of chemical engineering at the University of Cincinnati, US, addresses this issue twofold.

Continue reading Zeolite makes for a better battery life (Day 291)

Ambassador Prize for clean energy expert (Day 290)

??????????IChemE has traditionally awarded a range of medals and prizes to acknowledge the achievements of chemical engineers around the world.

It’s one of the ways in which we recognise that chemical engineering matters at an individual (or team) level, and I always look forward to the announcement of the winners.

The medals and prizes will be presented at a range of events and locations in the months ahead, but given that the list has been publicised in the March issue of The Chemical Engineer (tce) magazine, I thought I’d take the opportunity to blog about some of the winners and their achievements.

First up is the Ambassador Prize, this year awarded to my friend and colleague, Dr Paul Fennell, for his outstanding work to bring greater understanding of chemical engineering to non-chemical engineers – from government ministers to university students and school children, to people in the pub!

Continue reading Ambassador Prize for clean energy expert (Day 290)

Tiny carbon spheres reduce engine wear and tear (Day 288)

The reduction of friction and pumping losses in engines is important. Otherwise, the engine has to work that extra bit harder – up to 20 per cent of the total power produced can be wasted.

Photo credit | Purdue University This image taken with an electron microscope shows tiny carbon spheres added to motor oil
Photo credit | Purdue University
Image taken with an electron microscope shows tiny carbon spheres added to motor oil

Researchers from Purdue University, Indiana, US have addressed the problem by adding tiny, and perfectly smooth, carbon spheres to motor oil. This can reduce friction and engine wear by up to 25 per cent.

This offers major benefits in reducing friction and thus improved fuel economy.

Motor oil containing three per cent of the tiny spheres by weight, each measuring between 100-500 nanometres in diameter, delivered a reduction in friction between 10 and 25 per cent.

Continue reading Tiny carbon spheres reduce engine wear and tear (Day 288)

New material could capture carbon more efficiently (Day 287)

A cleaner fossil-fuelled future is something that I, along with many of my colleagues, aspire to achieve during my lifetime. Carbon capture, storage and use, and its potential to mitigate climate change figures strongly on my research agenda.

Nasser Khazeni Photo Credit | New Mexico State University
Nasser Khazeni
Photo Credit | New Mexico State University

So I was particularly pleased to learn that researchers from New Mexico State University (NMSU), US, have developed a new material that could capture carbon dioxide more efficiently and with greater capacity than any technology currently in place.

Now you may think this a bold claim, but the research focuses on adsorption as opposed to absorption – which is the most common method used for capturing carbon dioxide.

Nasser Khazeni, a chemical and materials engineering PhD student from NMSU, led and developed the research into this new technology, with specific focus on post-combustion separation of carbon dioxide.

Continue reading New material could capture carbon more efficiently (Day 287)

Energy research in South Africa (Day 284)

284 days into my blog and counting. By now, I trust you’ve realised that the chemical engineering profession is truly global.  But it’s still all too easy to focus on our own back yard. So today, I’m heading south to see what Africa has to offer.

Last July, IChemE signed an agreement with the South African Institution of Chemical Engineers (SAIChE) that formalised collaboration and brought chemical engineering in South Africa closer to IChemE’s global community.

I recently went on a trip to South Africa, and during my time there I met with many IChemE and SAIChE members who shared stories of their work.

The coal rig
Photo Credit | NWU
The coal rig

One of the research projects that caught my attention comes from North-West University (NWU) in Potchefstroom, south west of Johannesburg.

Much of the research at NWU looks at different aspects of the energy challenge, including bioenergy, fossil fuels (coal), nuclear energy and energy management. Today, I’m highlighting two different aspects of NWU’s energy research: safer and more sustainable coal stockpile management and the production of biodiesel from waste cooking oils.

Continue reading Energy research in South Africa (Day 284)

Record-breaking chemical engineering (Day 281)

One of my favourite parts of being a chemical engineer is getting to meet other engineers and discuss (and celebrate!) their work.

A few weeks ago I was lucky enough to be invited to the awards ceremony of the Queen Elizabeth Prize for Engineering, where chemical engineer Robert Langer was celebrated for his revolutionary work in drug delivery.

BP logo - BP Hummingbird...Whilst at the event, I got the chance to talk to the many other engineers in attendance. One of which told me about a very exciting project she had been working on.

The Andrew Area Development (AAD) project, completed by BP engineers, created the world’s longest pipeline bundle.

Continue reading Record-breaking chemical engineering (Day 281)

Producing clean energy from wastewater treatment (Day 278)

One of the major challenges we face today is reducing our energy and water consumption whilst maintaining necessary levels of production.

Part of this challenge requires a change in the way we think about these resources. It’s a mistake to consider energy and water in isolation. We need to make sure everyone is looking at the bigger picture.

recycle water symbolIt’s their ability to think holistically and consider the big picture that makes chemical engineers so useful.

Chemical engineering is a  broad church and I feel that the reason why the discipline can be applied in so many different settings is our ability to think about systems as a whole – not just focusing on the end goal.

This type of thinking, systems engineering, is key to the advancement of the ‘nexus approach’ (which I have discussed before; ‘Water versus energy – which is more precious?’ and ‘Food for thought on the water-energy-food nexus’) and helping us think of water, energy and food as interlinked.

Today’s story caught my eye because it’s a good example of forward-thinking by chemical engineers. Researchers from the Bioelectrochemistry group at the Universitat Autonoma de Barcelona (UAB) Department of Chemical Engineering, have been working to produce, rather than consume, energy during waste water processing.

Continue reading Producing clean energy from wastewater treatment (Day 278)

Thailand’s world first in waste (Day 275)

A shocking one-third of the food produced for human consumption – over a billion tonnes – is wasted every year – the United Nations tells us.

Global Water Engineering logo - GWE Chok...So you can imagine my delight when I learnt about the ground-breaking system developed by Global Water Engineering (GWE). Their system turns leftover cassava pulp into green energy using advanced anaerobic technology – and it does much more besides.

This certainly is another triumph for chemical engineering, and so it’s only fitting that GWE’s innovation earned them the IChemE Global Award for Energy back in November 2014.

Continue reading Thailand’s world first in waste (Day 275)

Hummingbird® propels biofuel technology into the 21st century (Day 272)

hummingbirdMany people share my passion for a world of cleaner transport. So I am excited by the amount of progress that has been made towards lower-emission fuels, especially in the domain of biofuels – fuels made from plants, other vegetable- and animal-derived materials.

In fact, the International Energy Agency‘s (IEA) technology roadmap for biofuels in transport suggests that, by 2050, biofuels could provide over a quarter of the world’s total transport fuel, and avoid around 2 gigatonnes of CO2 emissions per year.

Perhaps less obvious is the spread of bioplastics – plastics made from vegetable fats and oils, corn starch and other biomass sources – in the form of food and other packaging, crockery, cutlery, straws and more.

Bioplastics have non-disposable uses such as mobile phone casings, car interiors, and even medical devices. This is a fast growing market; I recently read a forecast predicting a doubling in biodegradable plastics alone from around UK£3.6 billion in 2015 to UK£8.2 billion in 2025.

BP logo - BP Hummingbird...For me, the IChemE global award-winning BP Hummingbird® project to develop a catalyst and process for converting bio-ethanol to ethylene is an excellent example of the ground-breaking chemical engineering that is bringing this cleaner, more cost-effective technology ever closer.

Continue reading Hummingbird® propels biofuel technology into the 21st century (Day 272)

A new window on Chinese New Year (Day 268)

chinese new year goatI have always been proud of the international chemical engineering community that IChemE represents. So I thought I would make a point to celebrate Chinese New Year on my blog.

Today, 19 February 2015, is the start of Chinese New Year – the year of the goat. However, the Chinese ‘New Year’ is only described as such in the West; in China, it is the Spring Festival and an official public holiday.

Traditionally, today is an important time of year for families to spend together.So I thought I would bring our chemical engineering family  a little closer together by sharing a good news story from some of our colleagues in China.

Chemical engineers from the East China University of Science and Technology, Shanghai Institute of Ceramics, Shanghai University, Shanghai University of Engineering Science and Shihezi University have worked together to develop energy saving ‘smart’ windows that exploit the properties of a heat sensitive gel.

Continue reading A new window on Chinese New Year (Day 268)

Making solar energy cheaper (Day 267)

The development of methods to produce greener, cleaner energy plays on the minds of many of us. However, our ability to take the next step and move these strategies forward is often stopped by the dirtiest of all things – money.

Money resting on a photovoltaic panelSo I was interested to read a recently published article in Materials Today discussing methods to bring about ‘Cost reduction in the solar industry’.

Professor Andrew Barron, Ser Cymru chair in engineering at Swansea University, indicates that costs can be reduced up to 20 per cent through changes in the manufacturing process of photovoltaic (PV) panels.

I hope that work like Andrew’s will help us to better understand all the costs and benefits associated with the many different strategies of producing energy and enable us to make more informed decisions based on what is financially possible, as well as what is environmentally viable.

Continue reading Making solar energy cheaper (Day 267)

The world’s first carbon capture ready industrial zone? (Day 265)

My enthusiasm for carbon capture and storage (CCS) will hardly come as a surprise to regular readers of this blog (see ‘The Complexities of Carbon Capture and Storage‘ or ‘Planet Poker‘). Nevertheless, today I have a new story about an exciting CCS development announced at the UK parliament last month. Teesside, in North East England, is responsible for six per cent of the UK’s industrial CO2 emissions. The area is also home to five of the UK’s top CO2 emitting plants. Now, with the cost of carbon permits expected to escalate, a consortium of government and industry stakeholders has formed a partnership called the Teesside Collective with the aim of forging nothing less than a new industrial future for Britain based on CCS.

Image courtesy of The Teesside Collective
Photo Credit | Image courtesy of The Teesside Collective

Continue reading The world’s first carbon capture ready industrial zone? (Day 265)